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ABSTRACT

Principal components analysis (PCA) has attracted increasing interest as a tool for

facilitating  analysis  of  high-density  event-related  potential  (ERP)  data.   While  every

researcher is exposed to this statistical procedure in graduate school, its complexities

are rarely covered in depth and hence researchers are often not conversant with its

subtleties.    Furthermore,  application  to  ERP datasets  involves  unique  aspects  that

would  not  be covered in  a  general  statistics  course.   This  tutorial  seeks  to  provide

guidance on the decisions involved in applying PCA to ERPs and their consequences,

using  the  ERP  PCA  Toolkit  to  illustrate  the  analysis  process  on  a  novelty  oddball

dataset.
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INTRODUCTION

Event-related  potentials  (ERPs)  is  a  well-established  method  for  measuring  the

electrical signals from the brain.  While it has very high time resolution, on the order of

milliseconds, it has very poor spatial resolution.  Thus, voltage fields from a small part of

the brain may volume conduct through the head and be detectable at many or most of

the recording electrodes on the head.  Not only does it become challenging to determine

which part of the brain a signal arises from, the signals from multiple parts of the brain

can end up overlapping in ways that makes it difficult for the human eye to distinguish

them.

Consider,  for  example,  the  waveforms  presented  in  Figure  1.   How many  ERP

components (bursts of voltage) contributed to these recorded waveforms?  While one

can clearly distinguish at least three peaks at about 200, 300, and 600 ms, past that

determination it  becomes somewhat ambiguous.  Further complicating matters is that

electrical fields are by their nature dipolar, producing a positive voltage on one side of

the head and a negative voltage on the other side of the head.  It is therefore unclear

whether the negativity at 600 ms in the top channel is a different ERP component from

the positive peak seen in the other two channels or whether it might just be the negative

side of the same ERP component.

A method for dealing with these issues is principal components analysis or PCA (for

reviews, see Gorsuch, 1983; Harman, 1976) which for many years has been used to

statistically decompose the ERP waveforms into their constituent building blocks (Dien &

Frishkoff, 2005; Donchin & Heffley, 1979; Glaser & Ruchkin, 1976; Möcks & Verleger,

1991).   With  the  increasing  use  of  high-density  recording  montages,  the  resulting

increase  in  the  volume  of  data  has  made  the  need  for  this  procedure  even  more

pressing.
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Thus,  the  primary  utility  of  PCA  with  ERP  datasets  is  to:  1)  help  identify  the

constituent  components  of  the  ERP,  2)  provide  a  dependent  measure  of  these

components for inferential testing, and more recently 3) help improve the localization of

the ERP sources (Carretie et al., 2004; Dien, 2010a; Dien, Tucker, Potts, & Hartry, 1997;

Dien,  Frishkoff,  Cerbone,  & Tucker,  2003;  Dien,  Spencer,  & Donchin,  2003;  Dien &

O’Hare, 2008; O’Hare, Dien, Waterson, & Savage, 2008; Pourtois, Delplanque, Michel,

&  Vuilleumier,  2008).   The  first  two  roles  are  especially  useful  for  developmental

populations where the data can be especially noisy due to movement artifacts and the

third role can be especially helpful for neuropsychological populations where the locus of

neurological deficits can be a primary concern.

The  usage  of  PCA  for  ERP  datasets  has  remained  largely  static  over  the  four

decades since it was first introduced (Donchin, 1966; Ruchkin, Villegas, & John, 1964).

For the most part it has been limited to applying the standard procedures according to

common conventions, such as the use of the Varimax rotation (Kaiser, 1958).  This state

of affairs is unfortunate for two reasons:  First, the common conventions were largely

developed  for  questionnaire  datasets  and  therefore  do  not  take  the  unique

characteristics  of  ERP  datasets  into  account.   Second,  statistical  science  has

progressed  greatly  since  those  early  days  and  it  would  be  desirable  to  take  full

advantage of these advances.

The  chief  obstacle  to  making  full  use  of  PCA  has  been  the  need  to  rely  on

commercial  statistics  packages.   Since  these  packages  were  not  written  with  ERP

datasets  in  mind,  even  basic  analyses  are  cumbersome  to  implement  and  more

advanced procedures have largely been neglected.  The ERP PCA Toolkit (Dien, 2010b)

was developed to address these difficulties1.  By implementing the statistical algorithms

within  a  widely  used  programming  environment  (Matlab),  it  has  been  possible  to

package the procedures in a fashion that makes use of  current statistical  advances,
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including some not yet available in commercial packages, and to optimize them for the

special needs of ERP datasets.

This tutorial will provide a guided tour through the PCA process, relying on the ERP

PCA Toolkit (version 2.14).  This paper is not, however, meant to be a tutorial on how to

use the Toolkit per se (see instead, Dien, 2010b).  This tutorial is also not intended to be

an  introduction  to  ERPs  for  novices  but  rather  a  guide  for  more  experienced  ERP

researchers who are interested in learning how to utilize PCA.  This tutorial will focus on

the decisions that need to be made and their consequences.  For information about the

statistical  mechanics  of  the  procedure  and  how  they  relate  to  ERPs,  see  (Dien  &

Frishkoff, 2005).

THE DATA

The example dataset (Figure 1) is a P3 Novelty dataset that has been presented

elsewhere  (Dien  et  al.,  2003;  Spencer,  Dien,  &  Donchin,  1999;  Spencer,  Dien,  &

Donchin, 2001) using an earlier version of the procedure.  It contains fifteen participants.

They participated  in  an oddball  task in  which they responded to a rare target  tone.

Periodically,  a  novel  environmental  sound  such  as  a  dog  bark  would  be  presented

instead of a tone.  The three cells of the dataset consist of standard tones, target tones,

and novel sounds.  The advantage of using this dataset is that it provides a simple task

with well-understood ERP components and strong experimental effects, which allow the

reader to easily ascertain the degree of success of the PCA procedure.  Using the same

dataset  will  also  allow  for  some  clear  examples  of  how  continuing  to  refine  the

procedures has had a meaningful impact on the results.

The first step in the PCA process (see Figure 2 for a list of the steps) is to decide

what to include in the analysis.  The typical ERP dataset has four sources of variance:

time points, channels, subjects, and conditions.  Decisions must be made about each of

these.
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Regarding time points, one can potentially restrict the time points to those of interest.

An advantage to doing so is that irrelevant time points can only slow down the analysis

and  inject  additional  noise  and  thus  imprecision  into  the  process.   It  has  been

demonstrated, for example, that if  one is only interested in the very early brain stem

auditory potentials, one may obtain better PCA results if one leaves out the later time

points as they contain much larger amplitude activity that drowns out the activity from the

brain stem potentials (Curry et al., 1983).

What is not as obvious is what constitutes irrelevancy.  A basic principle of PCA of

ERP data is that it is as much about characterizing the ERP components of non-interest

so that they can be separated out as it is about characterizing the ERP components of

interest.   Thus,  if  the  P300  is  the  only  ERP  component  of  interest,  one  would

nonetheless wish to also include all the time points containing the N200 since it tends to

overlap the P300 and will need to be removed.  Additionally, it can be helpful to include

the prestimulus baseline period as a comparison point to the activity of interest, both to

better determine what constitutes zero voltage and to provide an estimate for how much

noise remains after the PCA process.  In addition, including the baseline period can help

reveal the presence of prestimulus activity, such as the contingent negative variation or

CNV  (Walter,  Cooper,  Aldridge,  McCallum,  &  Winter,  1964) which  could  otherwise

unwittingly  be  affecting  the  analysis  (via  application  of  the  baseline  correction

procedure).  In general, it is recommended that one retain the entire epoch, including the

baseline period, unless there is reason to do otherwise.

Similar issues apply to channels.  In principle, one could restrict the PCA to just the

channels of primary interest.  Again, however, one would also wish to include channels

that  characterize  the overlapping  ERP components  of  non-interest.   As  it  turns out,

because volume conduction of voltage fields ensures that ERP components will affect all

the electrodes to at least some extent (except those along the zero voltage isopotential
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line),  in  the  channel  domain  all  ERP  components  overlap  with  all  other  ERP

components.  For this reason, the recommendation is to include all channels in the PCA

process.

With regard to subject variance, in principle one could eliminate it by using a grand

average instead of subject averages (and then applying the resulting factor loadings to

the individual subject averages).  Doing so would have the advantage of improving the

signal-to-noise ratio by averaging out some of the residual noise in the subject averages.

BESA's PCA option uses this very approach.  On the other hand, individual difference

variance can help the PCA distinguish between ERP components.  If, for example, if the

N2 and the P3 vary in their relative size across subjects, with some subjects having a

large N2 and a small  P3 and vice versa,  then the PCA could use this  difference to

separate them.  When put to the empirical test  (Dien, Khoe, & Mangun, 2007), it was

indeed found in a simulation dataset that using a grand average was less effective.  It is

therefore generally recommended to include all the subject averages, rather than using a

grand average.

Finally, condition variance may require the most thought.  It is generally best if the

data contain the same mix of ERP components throughout.  If, for example, the data

contain both auditory ERPs and visual ERPs, the PCA will have a tendency to attempt to

extract auditory ERP components from the visual trials and visual ERP components from

the auditory trials.  In general, this situation can yield degraded results.  No universal

rule can be provided on this point as every dataset is unique and requires a careful

balancing of competing considerations.  All that can be said is that if there is reason to

think that different conditions contain distinct mixes of ERP components, it may be best

to subject them to separate PCAs (which is to say not just somewhat different but very

very different, as in visual versus auditory ERPs).  In the example dataset, there is no

reason to think that  the different  conditions (standard,  target,  and novel)  will  contain

7



dramatically  different  ERP  components,  although  it  is  certainly  expected  that  their

amplitudes may differ.  Again, visual inspection can be used to make this determination.

INITIAL FACTOR EXTRACTION

The next step is to begin the PCA by choosing which source of variance to focus on.

In a conventional PCA of ERP data, one source of variance is emphasized by using it as

the variables and the others are used as the observations.  For example, in a temporal

PCA, the time points are the variables and the combinations of the other sources of

variance  are  the observations  (so,  for  example,  one observation  will  be  a  particular

channel from a particular subject from a particular condition).  While it might seem odd to

mix  these  different  sources of  variance  like  this,  all  of  them are  legitimate  ways of

dissociating two ERP components.  All the sources of variance contribute to the solution

but the one that is chosen to be the variables has the greatest influence  (see Dien &

Frishkoff, 2005).  It normally would take some effort to arrange the data manually but the

ERP PCA Toolkit does so automatically.

Temporal PCA generally produces better results than spatial PCA due to superior

component separation in the temporal domain (Dien, 1998a).  Essentially, whereas ERP

components need not overlap in the temporal domain (they can occupy different time

points), volume conduction ensures that they will always overlap in the spatial domain

and hence be more difficult to separate.

The major case where one might not wish to use temporal PCA is where the ERP

component has a variable time course.  In a temporal PCA, the factors are defined in

terms of a fixed time course (as described by the factor loadings).  The only way to allow

for an ERP component to have a substantially variable latency in a temporal PCA is to

assign multiple factors, each representing a different latency, complicating interpretation

(Dien,  Spencer,  &  Donchin,  2004;  Möcks,  1986).   For  this  reason,  it  is  generally

recommended to use temporal PCA, unless there is reason to believe that substantial
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latency jitter may be present.   Simple inspection of the grand average waveforms is

usually sufficient to make this determination.  As seen in Figure 1, while the P300 (the

positive peak at about 300 ms) can indeed have a quite variable latency, in the present

case  the  task  was  quite  simple  and  so its  latency  was  reasonably  constant  across

conditions.  ERP components other than the P300 tend to generally have more subtle

latency changes.  In such a case, the factor waveform will reflect the central tendency of

the latencies with the subtle differences being discarded.  Thus, subtle latency changes

are not an issue for temporal PCA as far as component identification goes but spatial

PCA should be used if the intention is to test for latency changes.

Another choice to be made at this point is rather technical and has to do with the

nature of the relationship matrix.  Essentially, the initial step in a PCA is to generate a

matrix summarizing the interrelationships between the variables (correlation, covariance,

or sums-of-squares).  Students in statistics courses are typically taught to use correlation

matrices,  which  is  appropriate  for  datasets  where  the  metrics  of  the  variables  are

incongruent (as in years of age and feet in height).  Commercial statistics packages tend

to make correlation matrices the default for similar reasons.  For ERP data, where all the

variables are in microvolts, the relative scales are meaningful (twice the value in one

time point compared to another is indeed twice the quantity), a covariance matrix is the

most logical choice and indeed yields better results  (Curry et al., 1983; Dien, Beal, &

Berg, 2005; Donchin & Heffley, 1979; Kayser & Tenke, 2003; Möcks & Verleger, 1991).

This  is  a  good  example  of  why  it  is  advisable  to  consider  carefully  the  special

characteristics of ERP data and how they may affect a PCA.

Yet  another  consideration  is  the  reference  scheme  used  for  the  data  (for  a

discussion of reference issues, see Dien, 1998b).  For a temporal PCA, the reference

scheme will make little difference because both correlation and covariance matrices are

both mean-corrected (the mean of the variable is subtracted, centering it on zero).  In
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effect, when performing a temporal PCA, the data is average referenced.  The reference

scheme will affect spatial PCA however, contrary to statements otherwise  (Pourtois et

al.,  2008),  since  there  the  variables  are  the  channels  and  so  the  zero-centering  is

occurring along the timepoints (as well as the subjects and cells).

The effect of reference scheme upon spatial PCA can be thought of in this manner.

PCA operates on the relationship matrix, such as a covariance matrix.  In such a matrix,

the diagonal contains the variances and the off-diagonal entries contain the covariances.

For  a  129-channel  montage,  there  will  be  129  diagonal  elements  and  16,512  off-

diagonal  elements,  so the effects  of  the covariances far  outweigh  the effects  of  the

variances.  If we imagine, for didactic reasons, an extreme case where there is an ERP

feature that is only present in one channel, it will appear in only that channel’s variance

entry  (a single  number  in  the diagonal  of  the covariance matrix).   If  we chose that

channel to be the reference, then that channel would be subtracted from all the channels

(including itself), with the result that all the other channels would now covary with each

other to some extent whereas the reference channel would now have zero variance (be

a flat line).  This feature would now be represented in most of the off-diagonal elements

and have a strong effect on the final PCA result.

Figure 3 illustrates how the reference choice can yield differing results.  The present

dataset was subjected to a four-factor PCA using Varimax rotation, with mean mastoids

reference (bottom of the montage) and on the left a mean cz-pz reference (top of the

montage) on the right.  The figure shows the mapping of the factor loadings, rescaled to

microvolts (see Visual Inspection section) by multiplying each by the variable’s standard

deviation.  Note that since the goal was to dramatize how the reference site can make a

difference, this example was purposely conducted in a manner intended to yield maximal

instability  of  the  results  (too  few  factors,  Varimax  rotation,  and  extreme  reference

choices).
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So which reference to choose, since reference choice is by its nature an arbitrary

choice?  If  there is a whole-scalp sampling by the electrodes, then the most neutral

choice is the one that best approximates the true distribution of the voltage fields, the

average reference (Dien, 1998b).  As such, it will minimize distortions caused by under

or overrepresenting an ERP feature in the analysis.  This choice is also preferable since

temporal  PCA also is  effectively  average referencing the data.   Such considerations

need to be balanced with a need to maintain consistency between the PCA and the rest

of the analysis procedure.

FACTOR TRUNCATION

The next step has been the subject of some debate in the ERP literature.  The goal

of a conventional PCA is both data description and data reduction, that is to describe the

structure of the independent variables and to summarize them with a smaller number of

variables.  In the case of ERP data, to determine how the measured voltages can be

described in terms of a small set of ERP components and to obtain direct measures of

them rather than having to analyze hundreds of measurements (at all the time points

and  at  all  the  channels).   The  initial  factor  extraction  serves  the  function  of  data

description.   The  goal  of  data  reduction  is  met  by  factor  truncation,  which  is  the

discarding of the smaller factors that are deemed to be mostly noise or otherwise of non-

interest.

There are a number of methods in common use for determining how many factors to

retain  when  truncating.   There  has  not  yet  been  a  systematic  comparison  of  these

methods in the ERP domain.  The recommended method, implemented in the ERP PCA

Toolkit,  is  the  Parallel  Test  (Horn,  1965).   The  logic  behind  this  test  is  that  if  one

performs PCA on an entirely random dataset (in this case, a set of computer-generated

random numbers with the same dimensions as the dataset of interest), one will obtain a
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set of randomly sized factors that when arranged in order of size will  form a smooth

slope.  If there are real signals embedded in the noise, then they will emerge as a set of

factors that are larger than one would obtain from noise alone.  In the Parallel Test, one

merely compares the results from the PCA of the ERP dataset to those obtained from a

PCA of random data.  Note that the present implementation differs from that the modified

Parallel Test suggested in an earlier paper (Dien, 1998a).  For the example dataset, the

Parallel  Test  suggests  that  nine  factors  be  retained,  accounting  for  95.43%  of  the

variance (Figure 4).

It  should  be  noted  that  it  has  been  argued  that  truncation  should  be  avoided,

retaining  the entire  set  of  factors  (an "unrestricted"  solution),  on  the basis  that  one

obtains more accurate results (Kayser & Tenke, 2003; Kayser & Tenke, 2006).  While it

may be true that doing so improves the data description (this author has not yet had the

time to examine this issue in depth), doing so does not address the data reduction goal.

It is argued that the resulting plethora of factors poses serious multiple comparison risks

(Dien,  2006).   It  may  be  that  this  concern  can  be  addressed  with  an  appropriate

procedure.  Certainly the analyses put forward in support of unrestricted solutions are

quite intriguing.  For now, this author considers the matter to be up for debate and in

need of further examination and discussion.

FACTOR ROTATION

The next step is to rotate the factor structure to an interpretable simple structure.

The essential problem with the initial results of the PCA is that the factors are calculated

sequentially, with each one accounting for the most possible variance that hasn't already

been accounted for by a prior factor.  Since the best way to accomplish this is for the

factor to be correlated with as many variables as possible (each variable contributes a

portion of the total variance and so the more variables, the more variance), the resulting

factors will generally not have a simple relationship with the ERP components (e.g., a
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factor might be a portion of the P1 plus a portion of the P2 plus a portion of the N2 plus a

portion of the P3 and so forth).

The purpose of rotation is to rearrange the factors such that they have a simpler,

more interpretable relationship with the underlying patterns (ideally, one factor per ERP

component).   This  is  possible  because  while  the  number  of  factors  is  fixed,  their

relationship to the underlying ERP components is not.   For example, given two ERP

components, one might have one factor per ERP component, one might have one factor

representing what the two ERP components share in common and another representing

how they differ, or anything in between those two extremes.  Rotations seek to find the

simplest  combination,  ideally  one factor  per  ERP component,  using  various  rules  of

thumb. Note, for example, how the first factor of the unrotated solution involves most of

the time points and how the third factor of the unrotated solution is combining three

apparently distinct ERP peaks whereas the rotated solution has peaks that are more

uniphasic and discrete (Figure 5).  A uniphasic pattern is a more plausible solution since

the  general  consensus  of  the  ERP  community  is  that  most  ERP  components  are

uniphasic, which is to say they have only a single peak or dip as the case may be.

The most important distinction between rotations is whether they are orthogonal or

oblique, which is to say whether the factors are allowed to be correlated or not.  The

most common rotation, Varimax, is an orthogonal rotation, which therefore forces the

factors to be uncorrelated.  While it is often stated that this characteristic of orthogonal

rotations is an advantage as it simplifies analysis, this author would argue that this is

simply wishful thinking.  If the two ERP components (e.g., N2 and P3) are correlated in

actuality, the resulting Varimax factors will indeed be uncorrelated, but only at the cost of

no longer being N2 and P3 factors (assuming the PCA was otherwise successful).  For

example,  the  way in  which  Varimax forces  a  positively  correlated N2 and P3 to  be

uncorrelated is by literally stitching together hybrid factors (e.g., one might have an N2
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factor glued to enough of the P3 to account for the shared variation and/or vice versa).

Stating  that  the  resulting  factors  as  being  an  N2  and  a  P3  factor  would  then  be

misrepresenting the results when in fact they are most likely an N2-P3 factor and a P3-

N2 factor,  which is to say questionable hybrids of uncertain provenance.   Thus, one

might find that a factor reflects an experimental effect and yet be uncertain as to whether

it was the N2 or the P3 that should properly receive credit as both factors would contain

both ERP components,  defeating  the entire point  of  conducting  the PCA in the first

place.

An example of  this  kind of  hybrid ERP factor  situation can be seen in Figure 6,

where, at least according to the Promax Rotation, the ERP activity described by Factors

1 and 2 are correlated r=0.582.   The Promax rotation then goes on to suggest  that

Varimax has forced them to be uncorrelated by grafting a portion of ERP Component 2

onto ERP Component 1 (the ascending arm of the waveform) and a portion of ERP

Component  1  onto  ERP Component  2  (the  descending  arm of  the  waveform),  thus

producing hybrid factors.  Only allowing the factors to be correlated has allowed this

artificial constraint to be removed, resulting in factors that correspond to the underlying

ERP components more purely.  Although it is not possible to state with certainty whether

the Promax solution for  this ERP data is in fact more accurate barring omniscience,

testing of simulation datasets (where the true answer is known) bears out this reasoning

(Dien, 2010a; Dien, 1998a; Dien et al., 2005; Dien et al., 2007).

A  counter-argument  sometimes  encountered  by  the  author  is  that  perhaps  ERP

components are not often correlated, in which case this concern would not be a practical

obstacle.  In truth, ERP components are nearly always correlated in PCA.  For example,

in a temporal PCA, the ERP components are correlated not just by condition variance

but also by spatial and subject variance (as all three types of variance are represented in

the observations).  Spatial variance in particular nearly ensures that ERP components
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will be correlated in a temporal PCA, because the only way for them not to be correlated

is if they are located at nearly right angles on the head, such that an equal number of

electrodes  have  the  same polarity  voltage  from  the  two  ERP components  as  have

opposite polarity voltage (Dien, 2010a), so that the polarity of one ERP component at an

electrode does not predict  the polarity of the other ERP component,  all  things being

equal.   Likewise,  temporal  variance  nearly  ensures  that  ERP  components  will  be

correlated in a spatial PCA (if the two ERP components occupy different time points, for

example, then they will be negatively correlated since an observation, which is to say a

time point, that contains one ERP component will not contain the other ERP component;

zero correlation would require there to be as many time points where they overlap as

time points where they do not, all things being equal, so that the presence of one does

not predict the presence of the other).  Indeed, simulation studies  (Dien, 2010a; Dien,

1998a; Dien et al.,  2005; Dien et al.,  2007) and real data studies  (Dien et al.,  2003)

clearly indicate that Varimax yields inferior results compared to oblique rotations.  It is

therefore somewhat difficult to defend continued use of Varimax rotations for ERP data.

Turning to oblique rotations, where the factors are allowed to be correlated, there are

two  chief  options.   The  first  is  Promax,  which  is  a  Varimax  rotation  where  the

orthogonality  of  the initial  solution  is  then relaxed  in  a  second step  (Hendrickson &

White,  1964).   While  there is  a  parameter  called  kappa that  controls  the  degree of

relaxation, a simulation study of ERP data suggests that it has little practical effect (Dien,

2010a).   The  second  is  Infomax  (Bell  &  Sejnowski,  1995),  a  type  of  Independent

Components  Analysis  (Hyvärinen,  Karhunen,  &  Oja,  2001),  where  the  rotation  is

performed  on  the  basis  of  higher  moments  like  kurtosis  in  addition  to  correlations

(although in practice the correlations are usually removed prior to the rotation so that

only  the higher  moments determine the rotation).   Although ICA comes from a very

different tradition than PCA, in ERP research it is generally applied after a PCA and is
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therefore in effect being used as a PCA rotation, albeit with distinct properties.  ICA is

generally  not  available  in  commercial  statistics packages but  has been made widely

available to EEG researchers via the EEGlab software package  (Delorme & Makeig,

2004).

Simulation  studies  suggest  that  Promax  is  most  effective  for  temporal  PCA and

Infomax is most effective for spatial PCA (Dien, 2010a; Dien et al., 2007).  The reason is

that Promax rotates such that the factor loadings are as extreme as possible, either zero

or very large.  Such a rotation is appropriate in the temporal domain, wherein the time

course for  an ERP component  typically  starts at  zero,  then abruptly rises to a large

amplitude, and then drops back to zero for the rest of the epoch.  In contrast, due to

volume conduction, ERP components tend to be non-zero at virtually every electrode,

except  along  the  zero  isopotential  line.   Infomax  rotates  in  order  to  maximize  non-

normality  of  the  factor  scores  (following  the  logic  that  the  Central  Limit  Theorem

indicates  that  factor  scores  that  reflect  a  mixture  of  ERP components  will  be  more

normally distributed than those that do not) and to minimize the ability for the higher

exponents  of  each factor  score  to predict  the other  factor  scores (independence),  a

criterion that lacks the drawbacks of the Promax approach in the spatial domain.

VISUAL INSPECTION

The next step is to visually inspect the results.  While it has been common to display

the raw factor loadings, this is again a practice that has been inappropriately carried over

from other areas of psychology.   Factor loadings are correlations and hence unitless

whereas ERP waveforms are in microvolts, and so they cannot be directly compared to

each other.  To put it in other terms, since computing correlations involves standardizing

the variables, the minor time points have been exaggerated and the major time points

have been diminished.  See Figure 7 for a sample grand average waveform that has

similarly been standardized in a manner consistent with a temporal PCA (by dividing the
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microvolt values by the standard deviation of the time point across the entire dataset,

meaning  all  the  waveforms  from  all  the  subjects  and  conditions  lined  up  as  the

observations) to see how viewing it in this form has distorted it.  In order to make factor

loadings comparable to the original waveforms, they should be rescaled to microvolts by

converting them into covariance loadings (Dien, 2006), which is done by multiplying the

correlation  factor  loadings  (unitless)  with  the  standard  deviations  of  the  variables

(microvolt units) to produce covariance loadings (microvolt units). 

More generally,  one can conceptualize  the PCA process as  splitting  the original

rectangular  matrix  of  voltage  measurements  into  two  separate  matrices,  the  factor

loadings and the factor scores.  One could reverse the process by matrix multiplying the

factor loadings and the factor scores to reproduce exactly the original data.  One could

also selectively reverse the process for just a single factor, thus generating the portion of

the data accounted for by a single factor (Factor 6).  This is what the ERP PCA Toolkit

does, automatically regenerating the waveforms and the scalp topographies for each

factor.   This  facility  is  very  helpful  for  interpreting  factor  results,  as  in  determining

whether  the  scalp  topography  differs  between  conditions,  a  sign  of  multiple  ERP

components being agglomerated into a single factor  (see Figure 8a for an example).

TWO-STEP PCA

Even after the rotation, the PCA may not be finished.  The essential issue is that

temporal  PCAs  have  difficulty  separating  ERP  components  that  have  similar  time

courses and spatial PCAs have difficulty separating ERP components with similar scalp

topographies.  Thus, the temporal PCA of the example data did not separate the P3a

and the P3b components (Figure 8a). In a two-step PCA (Dien et al., 2003; Spencer et

al., 1999), the factor scores from the first step are subjected to the complementary type

of  PCA  (e.g.,  spatial  after  an  initial  temporal  PCA)  in  order  to  separate  out  these

confounded ERP components.  It is generally recommended to do a separate second
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step PCA for each of the initial  first step factors.  Thus, in the present example one

would conduct nine separate spatial PCAs, one for each of the initial temporal factors.

Of course, the caution given earlier that temporal PCA will tend to handle substantial

temporal jitter by splitting the ERP components into multiple factors still holds (they can

be diagnosed by their identical scalp topographies).

An important question at this point is how to decide whether a factor represents a

distinct ERP component.  Let us say, for example, that according to the PCA there is

voltage activity that appears to have a similar scalp topography at two different latencies

- could they be two different ERP components or just a single one that has been split

into two due to something like the presence of substantial temporal jitter.  The answer is

that there is no cut and dry answer to this.  The question of componentry is a basic

challenge for ERP researchers using any method of inspection, not restricted to PCA (for

a discussion of this issue, see Sutton & Ruchkin, 1984).  PCA merely highlights potential

ambiguity.   That  said,  in  the  experience  of  this  author,  this  situation  is  relatively

infrequent.

Figure 9 displays the results for the example analysis.  The parallel test suggested

three factors to be retained for the second, spatial Infomax step.  The P3 factor has been

split  into  separate P3a and P3b factors,  as suggested by the scalp  topographies  in

Figure 8a.  The scalp topography of the P3b factor contrasts with a later latency factor

that seems to correspond to the Positive Slow Wave (Ruchkin, Munson, & Sutton, 1982;

Ruchkin & Sutton, 1983; Sutton & Ruchkin, 1984) that has previously been separated

from the P3b by PCA  (Squires,  Donchin,  Herning,  & McCarthy,  1977).   Overall,  the

results are consistent  with the original  reports  (Spencer  et  al.,  1999;  Spencer et  al.,

2001) with some differences attributable to the ongoing refinements in the procedure.

The most notable difference is that the Positive Slow Wave scalp topography now clearly

differs from the P3b scalp topography whereas in the original report the same spatial
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factor (SF1) accounted for both of them.  This change is likely due to the use of separate

spatial PCAs for each temporal PCA that freed them to be different rather than using a

single spatial  PCA across the entire epoch that biased the solution towards a single

spatial  factor  that  accounted  for  both  features.   This  case  therefore  serves  as  an

example of how continuing to refine the procedure can yield meaningful benefits.

ANOVAs

The final step is to subject the factors scores to inferential statistics to determine

which effects are reliable.  A chief issue is that PCA can generate hundreds of factors,

especially if one uses unrestricted solutions or even restricted two-step PCAs.  Given

that a p-value of .05 can result in a false alarm for one out of twenty of them, this can be

a serious issue.  The following procedure is recommended.  First set a threshold for

factor size, below which it will not even be considered (e.g., .5% of total variance).  This

will  screen out the great majority of junk factors that reflect uninteresting noise.  The

second step is to set aside factors that can be identified as being of  a priori interest

(such as a factor from a language study that has the same scalp topography and latency

as the N400).  Everything else should be deemed exploratory and controlled for multiple

comparisons, as by a Bonferroni test.  When approached in this manner, experience of

the author has shown that PCA can retain good statistical power for identifying potential

new  ERP  components  while  maintaining  statistical  rigor.   In  the  present  case,  this

procedure (if all the factors are treated as exploratory) resulted in 18 factors to be tested

with  a  Bonferroni  corrected  alpha  threshold  of  0.0028  for  which  2  factors  achieved

significance, with a further five factors potentially being significant if a case can be made

to treat them as being of a priori interest (as in clearly corresponding to the P3a or the

P3b based on the prior literature).

The utility of converting the PCA results to microvolt scaling can again be seen when

one proceeds to interpret the significant ANOVA results with bar charts because, unlike
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standardized scores, the microvolt-scaled factor scores can then be directly interpreted.

Consider,  for  example,  that  ERP  components  are  electrical  dipoles  and  hence  will

manifest as positive voltages over one side of the head and negative voltages over the

other side of the head, such that they sum to zero over the entire body surface (Nunez,

1990).  Whether an ERP component is considered to be a negativity or a positivity by

researchers is determined by which side of the voltage fields falls over the traditional

scalp recording sites.  So how can a positive factor score simultaneously represent both

the positive voltage sites and the negative voltage sites?  In actuality, the sign of a factor

score is arbitrary.  It is only the product of the appropriate factor loading and the factor

score that has a meaningful relationship to the sign of the original voltage data.  In this

case,  the  factor  loadings  for  the  negative  voltage  sites  would  be  negative  and  the

positive voltage sites would be positive.  In order to produce a meaningful bar chart, one

would need to choose a specific moment in time at a specific electrode and then multiply

the  corresponding  factor  scores  and  factor  loadings,  all  appropriately  scaled  into

microvolts.   Note  that  converting  the  factor  scores  to  microvolt  scaling  prior  to  the

ANOVA would have no effect on the final results since the units in the numerator and the

denominator  of  the  F-ratio  cancel  out,  leaving  the  same  number  regardless  of  the

scaling.

Note also that if a spatial PCA (or a two-step PCA) was conducted, then it makes no

difference to the result which channel is chosen; choosing a channel merely allows one

to express the dependent measure in a readily interpretable manner.  This is the case

because the dependent measure (the factor scores) does not include channel variance;

the channels are expressed as a set of factor loadings which all relate in a linear manner

to the same set of factor scores.  Thus, assuming identical standard deviations across

the channels  for  the sake of  simplicity,  if  Channel  1 has a factor  loading  of  .6  and

Channel 2 has a factor loading of .3, then the microvolt scaled dependent measure for
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Channel 1 will be twice as large as if Channel 2 was selected (because converting to

microvolt  scaling  involves  multiplying  the  factor  scores  by  the  factor  loading)  but

otherwise the ANOVA results  will  be identical  (because both the numerator  and the

denominator  of  the  F statistic  will  be twice  as large and therefore this  difference in

magnitude will cancel out, leaving the identical F statistic).  A similar logic applies to time

points when a temporal PCA (or two-step PCA) has been conducted.

OTHER METHODS

It may be of some interest to consider how PCA relates to other methods.  One

related technique that has become popular is global field power or GFP  (Lehmann &

Skrandies,  1980).  In this method,  the voltage measurements at  a given timepoint  at

every channel is first squared (to eliminate negative signs) and then added together.

This  provides  an  overall  measure  of  voltage  activity  across  the  entire  head.

Discontinuities in  the resulting graph over time can be interpreted as evidence for  a

change in the ERP componentry and used to segment the epoch into segments.  This

approach is  somewhat  equivalent  to  a temporal  PCA in that  both segment  the time

points.  Compared to temporal PCA, it is simpler to use.  In principle, it has the drawback

that it could miss a shift between the dominance of one ERP component and another if

they temporally overlap such that there is not a marked dip in the GFP between them.

This issue can be addressed using methods like TANOVA  (Pourtois et al., 2008) and

single-trial clustering methods (De Lucia, Michel, & Murray, 2010), which detect changes

in scalp topography.  This collection of methods share the drawback of temporal PCA in

that  they may be blind  to ERP components that  have largely  the same time course

(Pourtois et al.,  2008), such as the P3a and the P3b in the example dataset.  Every

method has strengths and weaknesses and so it  will  require  systematic  quantitative

comparison studies to determine relative utility.
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CONCLUSION

In conclusion, applied properly and cautiously, PCA can help interpret the structure

of ERP datasets as well as facilitate in their source analyses (for examples where PCA

was demonstrated to provide improved co-registration of ERP data with fMRI data, see

Dien et al.,  2003; O’Hare et al.,  2008).  They are not infallible,  however, and so the

results should always be taken cautiously and in light of prior studies.  In general, there

is also a cost to their use in that statistical power is often reduced compared to simple

windowed measures, even without the need for multiple comparisons control.  One must

therefore weigh the merits of the increased complexity and reduced statistical  power

versus the improved characterization of the data.  When that trade-off is deemed to be

worthwhile, the ERP PCA Toolkit can be a helpful tool.  
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FIGURE LEGENDS

Figure  1.   Example Novelty  P3 Dataset.   The figure displays  the grand average

waveforms at three representative electrode sites from a prior report of a novelty oddball

paradigm (Spencer et al., 1999).  "aFz" is just anterior to the channel Fz, on the front of

the head.  Cz is at the very top of the head.  Pz is just behind it, over the parietal lobes.

The "z" part of the channels names denote that they are located along the midline of the

scalp running from front to back.

Figure 2.  Flowchart of steps in PCA of ERP.  This figure lists the different steps to

be taken where decisions are required.

Figure 3.  Effects of Reference on Spatial PCA.  This figure shows the effect that the

reference channel choice can make on spatial PCA results.  On the left is the result of a

four-factor Varimax rotation with mean mastoid references on the bottom of the head

and on the right is the result with a mean of Cz and Pz channels on the top of the head.

Figure 4.  Screenshot of the EP Toolkit's Parallel Test.  The plot pits the size of the

unrotated factors of the data against the size of the unrotated factors of a same-sized

random dataset.  The number of factors that are larger than what one obtains from a

random dataset is the number that one should retain, in this case nine, as indicated by

the arrow.  The X-axis is the factors and the Y-axis is the variance accounted for by that

factor.

Figure 5.  Unrotated Versus Rotated Solution.  This figure contrasts the unrotated

factor loadings versus the corresponding rotated (Promax) factor loadings.  Note how

the rotation has caused the waveforms to become more ERP-like, simpler and uniphasic

(the general  consensus of  the ERP community  is  that  ERP components are usually

uniphasic, which is to say they have only a single peak or dip as the case may be).  The
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original  unrotated waveforms appear  to be,  in  some cases,  combinations  of  multiple

ERP components.

Figure  6.   Varimax Rotation  Versus Promax Rotation.   This  figure  contrasts  the

Varimax factor loadings versus the corresponding Promax factor loadings.  Note how the

Promax  rotation  has  caused  the  waveforms  to  become  even  tighter  and  ERP-like,

especially along the ascending slope of Factors 1 and 3 and the descending slope of

Factor 2.  Note also how Promax's relaxation of the arbitrary orthogonality constraint has

allowed Factors 1 and 2 to become more distinct from each other.

Figure 7.  Microvolt Scaling Versus Standardized Scaling.  This figure contrasts the

effects of presenting the grand average waveform at Cz and of the factor loadings in

both  microvolt  scaling  and  standardized  scaling  (wherein  the  microvolt  values  are

divided by the standard deviation of the time point across the entire dataset).  Note how

standardizing has caused the noise in the early time points for both the grand average

and for the factor waveforms to become magnified.  Also note how standardizing has

distorted  the  P300  in  the  grand  average  waveform;  while  less  obvious,  the  factor

waveforms have been similarly  distorted by the standardizing.   Converting the factor

waveforms to microvolt scaling removes these distortions and allows them to be directly

compared to the grand average waveforms, which are already in microvolts.

Figure 8.   Reconstructed P3 Factor.   This  figure compares the reconstructed P3

factor to the grand average waveform.  These P3 factor waveforms represent the portion

of the grand average accounted for by the P3 factor.  The PCA Factor column illustrates

how the scalp topography differs in the Target and the Novel conditions, suggestive that

multiple ERP components were aggregated into this P3 factor (in this case, the P3a and

the P3b).  The grand average column is nearly identical to the PCA column, showing

that at this time point (296 ms), this factor accounts for nearly all of the ERP data.  The

waveform column shows how at channel Cz (at the top of the head), this factor accounts
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for only a portion of the ERP grand average waveform as one looks across the entire

epoch.

Figure  9.   Two-Step PCA Results.   This  figure displays  how the Two-Step PCA

procedure has split the initial P3 factor (illustrated in Figure 8) into three components,

the P3a, the P3b, and the Frontal Negativity.  See how it has clarified the nature of the

condition effects, with the P3a and the Frontal Negativity being much larger in the Novel

condition  whereas  the  P3b  is  largely  comparable  in  both  the Target  and  the Novel

conditions.  In addition, the Positive Slow Wave factor is also displayed to show how its

scalp topography is shown to differ from that of the P3b, confirming that it is a different

ERP component, a conclusion that would have been difficult to make based on just the

grand average data where these different ERP components were mixed together. 
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FOOTNOTES

1) The Toolkit can be downloaded for free 

(https://sourceforge.net/projects/erppcatoolkit/).  Those interested in can also join the 

mailing list (https://lists.sourceforge.net/lists/listinfo/erppcatoolkit-support) to be alerted 

when new versions are posted.
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